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A B S T R A C T

Continuous flow synthesis offers major advantages in the production of specialty products, e.g. zeolites, such as
tight temperature control and lower variation in product quality. Here we consider the hydrothermal synthesis
of NaX zeolites in a continuous oscillatory baffled reactor (COBR). A process model is derived from physico-
chemical relationships to analyze and optimize the operation of a pilot scale continuous oscillatory baffled
reactor for zeolite synthesis. The process model is validated using plant data. Furthermore, the uncertainty
of the model predictions is quantified. Based on this analysis, robust optimization is used to compute robust
optimal operation points of the COBR. These optimal operation points are validated by the application to a
real pilot plant.
1. Introduction

Zeolites are an important class of ceramics for industrial and con-
sumer applications. The production of zeolites is often performed by
hydrothermal synthesis which requires long residence times at ele-
vated temperatures [1]. In industrial scale, it is usually performed in
large batch reactors [2,3]. However, continuous flow synthesis offers
great advantages over batch production, such as lower energy demand
caused by better heat integration, lower product variations, and smaller
equipment [4–6]. Therefore, the continuous production of zeolites is a
current field of intense research [5,7]. The semi-continuous synthesis of
zeolites was first studied by Cundy et al. [8]. A disadvantage of continu-
ous stirred tank reactors is that they decrease the product quality due to
high back mixing. Therefore, they are only applicable for synthesizing
low-quality zeolites [2]. Zeolite synthesis in tubular reactors has been
studied for different products by Liu et al. [9] and Vandermeersch
et al. [10]. However, these works include a speedup of the reactions by
changing the synthesis conditions to be able to finish the process within
short residence times, which is only applicable to selected zeolites. Only
residence times up to several minutes were realized because of the
necessary flow velocities.

Continuous oscillatory baffled reactors are promising candidates
for reaction and crystallization processes that involve slurries. The
improved mixing and heat transfer characteristics of the COBR were
shown e.g., by Mackley and Ni [11] and Mackley and Stonestreet
[12]. The COBR technology has already been applied to different prob-
lems such as the continuous crystallization of pharmaceuticals [13],
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the solution crystallization of l-glutamic acid [14], or the production
of biofuel [15]. The idea to utilize the advantages of the contin-
uous oscillatory baffled reactor for zeolite synthesis has first been
reported by Nicolas et al. [16]. Recently, Ramire. Mendoza et al. [17]
demonstrated the efficient production of zeolite NaX in a pilot scale
continuous oscillatory baffled reactor over several hours of production.
The COBR provides a tight residence time distribution with an intense
radial mixing to prevent sedimentation of the zeolite suspension and
clogging of the reactor.

The crystallization of zeolites has been studied intensely. Various
crystallization models have been proposed to describe the observed
phenomena. However, most of these models were formulated for batch
processing and describe the crystallization process as a time-dependent
process with an analytic expression for the crystallinity [18], such as
the well-known Avrami [19] model which describes the crystallization
as a function of reaction time for a random distribution of nuclei
or the model proposed by Gualtieri [20] that models the nucleation
probability as a function of reaction time. However, these models are
not suitable for the description of spatially distributed and continuous
processes. Population balance models offer a higher potential for inte-
gration in a process model for a continuous plant. Thompson and Dyer
[21] developed a population balance model for the crystallization reac-
tion, Nikolakis et al. [22] included the effect of the gel microstructure
into the description of the nucleation step. Our model for a continuous
production of zeolites in a tubular reactor is based on the proposed
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population balance models of the zeolite kinetics which is integrated
into the energy and material balances along the reactor.

When process models are used for process design, operation and
control the discrepancies between the predictions of the model and the
real behavior of the process have to be taken into account in order
to achieve the specifications of the process also in the presence of
these deviations, that are generally termed ‘‘plant-model mismatch’’.
Optimal design and operation in the presence of plant-model mismatch
belongs to the domain of optimization under uncertainty which is a
broad and active field of research. Dependent on the formulation of
the optimization problem and the assumptions about the uncertainty,
a variety of different approaches exist. In this work, the focus is
on constraint satisfaction in the presence of parametric uncertainties,
i.e. errors in the assumed values of the model parameters. Classical
robust approaches handle such problems by the formulation of a min–
max problem [23] where the specifications must be met for the worst
case values of the uncertain parameters. This however, can lead to
very conservative results. In probabilistic approaches, this is circum-
vented by formulating chance constraints, i.e. the constraints have to
be satisfied with a prescribed probability. To solve such optimization
problems involves the approximation of the probability distribution of
the constraint functions [24] which is difficult for nonlinear dynamic
process models. In this work, the unscented transform [25] is used to
approximate the probability distribution with low computational effort,
similar to [26].

Semrau and Engell [27] presented simulation studies of the flexible,
dynamic operation of continuous zeolite production in an oscillatory
baffled reactor for a fluctuating price of electrical energy. The operating
parameters (throughput, inputs of heating power) were optimized to
minimize the production cost over an interval of e.g. one day for time-
varying prices of electric energy while meeting the specification of the
quality of the product. To realize such a demand response strategy at
a real plant, robust operating parameters must be determined that lead
to the satisfaction of the specification of the product properties also in
the case of model errors.

Therefore, in this work, the robust operation of the synthesis of
zeolite NaX (FAU type) in a pilot scale COBR is investigated. A math-
ematical process model consisting of partial differential equations of
the zeolite production process, based on rigorous sub-models is pre-
sented first. The mass transfer and the energy transfer models and the
resulting prediction of the crystallization of the zeolite are validated
separately on the basis of experimental data. The plant model mismatch
is analyzed and described by a covariance matrix of the uncertainty
of selected parameters. Based on the unscented transform, a robust
optimization of the operating points is performed and the validity of
computed operating points is verified by the application to the pilot
scale production plant.

2. Process

The scheme of the pilot-scale zeolite production process is shown
in Fig. 1. This work considers the continuous hydrothermal production
of zeolite X (FAU-type structure) from sodium silicate, aluminum ox-
ide, and sodium hydroxide. The alkaline alumina and silica solutions
are prepared separately and provided via the two feeding tanks. The
reactants are pumped by two gear pumps into the high shear inline
mixer along with a fixed amount of seed crystals. The addition of seeds
to the reactive mixture prevents the necessity of an aging step in the
zeolite formation and promotes the formation of the desired crystalline
phase. The reaction mixture is subsequently fed into the continuous
oscillatory baffled reactor (COBR). The COBR has a diameter of 43 mm
and a total length of 42.4 m. The oscillations in a frequency range
of 0.1–3 Hz and with amplitudes of 10–150 mm are imposed by two
gear pumps. The COBR pipe is surrounded by a heating jacket which
is operated in a co-current flow configuration with thermal oil as
heating medium. The COBR is equipped with three heating jackets
2

along the reactor length. These are coupled to thermostatic baths
that are operated at variable set-points. The throughput of the zeolite
suspension is between 34.2 kg/h and 91.2 kg/h. The temperature has
to be lower than 130 ◦C to prevent the formation of gas bubbles
and the formation of undesired zeolite phases, especially zeolite-A
or zeolite-Y [28]. The temperature profile of the reaction medium is
measured by 11 thermocouples that are uniformly distributed over the
reactor length. The reactor is equipped with five sampling points along
the length of the reactor to take samples for off-line analysis of the
reactive suspension. For detailed information about the experimental
set-up, the operation procedure, the involved zeolite chemistry and the
analytics we refer the reader to the prior work by Ramire Mendoza [29]
and Ramire. Mendoza et al. [17].

3. Dynamic model

3.1. Mass transport

The behavior of the oscillatory baffled reactor is described by a
rigorous dynamic model. The content of the tubular reactor is as-
sumed to be spatially inhomogeneous in the axial domain with the
reactor length 𝐿. The radial variation of concentrations and tempera-
tures are assumed to be small due to efficient mixing caused by the
secondary vortices which are formed by the oscillating flow in the
baffled tube [30]. The axial dispersion model is used to describe the
back mixing caused by the flow patterns in the oscillatory baffled
reactor. The general formulation of a standard axial dispersion model
of a concentration 𝐶𝑗 (𝑡, 𝑧) in the axial domain 𝑧 with mixed boundary
conditions at the inlet and a zero gradient condition at the outlet is
given in Eq. (1).

𝜕𝑡𝐶𝑗 (𝑡, 𝑧) = −𝑣𝜕𝑧𝐶𝑗 (𝑡, 𝑧) +𝐷𝑎𝑥𝜕
2
𝑧𝐶𝑗 (𝑡, 𝑧) + 𝜅𝑗 (𝑡, 𝑧) (1a)

0 = 𝑣𝐶𝑗,𝑖𝑛 − 𝑣𝐶𝑗 (⋅, 0) +𝐷𝑎𝑥𝜕𝑧𝐶𝑗
|

|

|𝑧=0
(1b)

0 = 𝜕𝑧𝐶𝑗
|

|

|𝑧=𝐿
(1c)

𝐶𝑗 (0, ⋅) = 𝐶𝑗,0 (1d)

𝑗 are the different concentrations, e.g. of amorphous solid 𝐶𝑎𝑚. 𝑣 is the
elocity, and 𝐷𝑎𝑥 is the axial dispersion coefficient. These parameters
𝑣, 𝐷𝑎𝑥) are assumed to be constant over the reactor length. 𝜅𝑗 is the

volumetric generation/consumption term of the species 𝑗 e.g. of the
amorphous solid 𝜅𝑎𝑚, these are explained in detail in Section 3.3. The
ratio of convection and dispersion in real reactors can be described
using the Peclet number

𝑃𝑒 = 𝑣𝐿
𝐷𝑎𝑥

. (2)

For high values of the Peclet number (𝑃𝑒 > 100) [31] the reactor dy-
namics are close to the behaving of a plug flow reactor.

3.2. Energy transport

The energy balance equations are formulated for three compart-
ments, the reaction medium, the heating jacket, and the reactor walls.
The energy transport of the reaction medium 𝑇𝑅 in the reactor is
described by Eq. (3). Only convective heat transport along the reactor
length is considered. The specific heat of the zeolite crystallization
is −2.38 kJ/mol [32] and the resulting adiabatic temperature rise is
below 0.2 K. Therefore, the heat of reaction can be neglected. The
inlet temperature of the reactor is considered via the inlet boundary
condition (3c). The model includes the heat exchange with the reactor
wall which is modeled separately.

𝜕 𝑇 (𝑡, 𝑧) = −𝑣𝜕 𝑇 (𝑡, 𝑧)
𝑡 𝑅 𝑧 𝑅
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Fig. 1. Process flow diagram of the continuous oscillatory reactor set-up for the continuous zeolite production.
+
𝑘𝐴𝑅,𝑤

𝜌𝑅𝑐𝑝,𝑅𝐴𝑞,𝑅
⋅
(

𝑇𝑤(𝑡, 𝑧) − 𝑇𝑅(𝑡, 𝑧)
)

; 𝑧 ∈ (0, 𝐿) (3a)

𝑇𝑅(⋅, 0) = 𝑇𝑅,𝑖𝑛 (3b)

𝑇𝑅(0, ⋅) = 𝑇𝑅,0 (3c)

The energy balance of the reactor wall 𝑇𝑤(𝑡, 𝑧) is described by (4), in
which the conductive heat transport, the transfer term to the reaction
medium, and the heat transfer to the heating jackets are considered. At
the beginning and at the end of the reactor, the zero gradient boundary
conditions (4b), (4c) are assumed.

𝜌𝑤𝑐𝑝,𝑤𝜕𝑡𝑇𝑤(𝑡, 𝑧) = 𝜆𝑤𝜕
2
𝑧𝑇𝑤(𝑡, 𝑧)

−
𝑘𝐴𝑅,𝑤

𝐴𝑞,𝑤
⋅
(

𝑇𝑤(𝑡, 𝑧) − 𝑇𝑅(𝑡, 𝑧)
)

+
𝑘𝐴𝑤,𝐽

𝐴𝑞,𝑤
⋅
(

𝑇𝐽 (𝑡, 𝑧) − 𝑇𝑤(𝑡, 𝑧)
)

(4a)

0 = 𝜕𝑧𝑇𝑤
|

|

|𝑧=0
(4b)

0 = 𝜕𝑧𝑇𝑤
|

|

|𝑧=𝐿
(4c)

𝑇𝑤(0, ⋅) = 𝑇𝑤,0 (4d)

𝑇𝐽 (𝑡, 𝑧) =

⎧

⎪

⎨

⎪

⎩

𝑧ℎ𝑒𝑎𝑡𝑒𝑟,1,𝑏𝑒𝑔𝑖𝑛 <𝑧≤ 𝑧ℎ𝑒𝑎𝑡𝑒𝑟,1,𝑒𝑛𝑑∶ 𝑇𝐽 ,1(𝑡, 𝑧)
𝑧ℎ𝑒𝑎𝑡𝑒𝑟,2,𝑏𝑒𝑔𝑖𝑛 <𝑧≤ 𝑧ℎ𝑒𝑎𝑡𝑒𝑟,2,𝑒𝑛𝑑∶ 𝑇𝐽 ,2(𝑡, 𝑧)
𝑧ℎ𝑒𝑎𝑡𝑒𝑟,3,𝑏𝑒𝑔𝑖𝑛 <𝑧<𝑧ℎ𝑒𝑎𝑡𝑒𝑟,3,𝑒𝑛𝑑∶ 𝑇𝐽 ,3(𝑡, 𝑧)

(4e)

The temperatures of the heating jackets 𝑇𝐽 ,𝑖(𝑡, 𝑧) are described by
the energy balances shown in (5). In the heating jacket, the flow is
convection dominated. Heat transfer to the reactor wall and heat loss
to the environment are considered. The heating jacket is separated
into three different sections 𝑖 heated by the three different heaters ℎ𝑖,
as shown in the reactor set-up. The PDEs are defined on the domain
𝑧 ∈ (𝑧ℎ,𝑏𝑒𝑔,𝑖, 𝑧ℎ,𝑒𝑛𝑑,𝑖) from the beginning to the end of the heater ℎ𝑖 for
all three heaters. 𝑇ℎ,𝑖 is the temperature of the heating baths.

𝜕𝑡𝑇𝐽 ,𝑖(𝑡, 𝑧) = −𝑣𝐽 ,𝑖𝜕𝑧𝑇𝐽 ,𝑖(𝑡, 𝑧)

−
𝑘𝐴𝐸,𝐽

𝜌𝐽 𝑐𝑝,𝐽𝐴𝑞,𝐽
⋅
(

𝑇𝐽 ,𝑖(𝑡, 𝑧) − 𝑇𝑤(𝑡, 𝑧)
)

−
𝑘𝐴𝑤,𝐽

𝜌𝐽 𝑐𝑝,𝐽𝐴𝑞,𝐽
⋅
(

𝑇𝐽 ,𝑖(𝑡, 𝑧) − 𝑇𝐸 (𝑡, 𝑧)
)

(5a)

𝑧 ∈ (𝑧 , 𝑧 )
3

ℎ𝑒𝑎𝑡𝑒𝑟,𝑖,𝑏𝑒𝑔𝑖𝑛 ℎ𝑒𝑎𝑡𝑒𝑟,𝑖,𝑒𝑛𝑑
Fig. 2. Schematic of the zeolite crystallization steps.

𝑇𝐽 ,𝑖(⋅, 𝑧ℎ𝑒𝑎𝑡𝑒𝑟,𝑖,𝑏𝑒𝑔𝑖𝑛) = 𝑇ℎ,𝑖 ∀𝑖 ∈ [1, 3] (5b)

𝑇𝐽 (0, ⋅) = 𝑇𝐽 ,0 (5c)

3.3. Zeolite crystallization

The zeolite crystallization model is a modified version of the model
from Nikolakis et al. [22] based on the basic work of Thompson and
Dyer [33] and Bhatia and Perlmutter [34].

The model describes the concentration of zeolite unit cells. The
alumina and silicate feed streams form a solid gel phase that consists
of amorphous particles which are formed instantaneously after the
mixing step. In the crystallization reaction, the structural change of the
amorphous to a crystalline solid phase takes place. The main reaction
steps in this transition are shown in Fig. 2. First, the amorphous phase
dissolves in the liquid phase. Then the supersaturation leads to a
heterogeneous nucleation on the surface of the amorphous gel particles.
The formed nuclei grow dependent on the supersaturation, to form the
crystalline zeolite particles.

A basic assumption of the model is that the molar densities of the
solid and the liquid phase, as well as the overall molar density, are
constant. This holds true since the concentration of the dissolved unit
cells is small.

3.3.1. Dissolution
First, the dissolution step is modeled. The dissolution of the amor-

phous solid is a comparably fast step [35]. The dissolution rate of
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the amorphous solid, 𝐻(𝑡, 𝑧) is assumed to depend linearly on the
concentration difference between the liquid concentration 𝐶𝑠𝑜𝑙(𝑡, 𝑧) and
he equilibrium concentration of the amorphous solid in the liquid
𝑒𝑞,𝑎𝑚. This was validated in lab measurements by Antonic and Ci [36].

n lab studies, the reaction order of the amorphous solid concentration
𝑎𝑚 for the dissolution step was found to be 0.67 [36]. However, here
linear dependency of the amorphous solid concentration 𝐶𝑎𝑚(𝑡, 𝑧)

n the rate of dissolution was used, similar to [33] since there is
lmost no effect of the dissolution order on the overall progress of the
rystallization. The mathematical expression of the dissolution rate is
iven by (6):

(𝑡, 𝑧) = 𝑘𝐻 (𝑡, 𝑧) ⋅ (𝐶𝑠𝑜𝑙(𝑡, 𝑧) − 𝐶𝑒𝑞,𝑎𝑚) ⋅ 𝐶𝑎𝑚(𝑡, 𝑧). (6)

he component balances of the zeolite unit cells of the amorphous solid
𝑒𝑞,𝑎𝑚 and of the dissolved ions 𝐶𝑠𝑜𝑙(𝑡, 𝑧) are described by the transport
q. (1) with the reaction rates shown in Eqs. (7)–(8). �̇�𝑧𝑒𝑜 is the molar

crystallization rate.

𝜅𝑎𝑚(𝑡, 𝑧) = −𝐻(𝑡, 𝑧) (7)

𝜅𝑠𝑜𝑙(𝑡, 𝑧) = 𝐻(𝑡, 𝑧) − �̇�𝑧𝑒𝑜(𝑡, 𝑧) (8)

The number density function of the zeolite particles 𝑛(𝑡, 𝑧, 𝑙) of
particle size 𝑙 is modeled analogous to [21,22]. It can be described by
the transport Eq. (1) for 𝑛(𝑡, 𝑧, 𝑙) combined with the population balance
Eq. (9). Heterogeneous nucleation with the rate 𝐵(𝑡, 𝑧) and growth with
the growth rate 𝐺(𝑡, 𝑧) are assumed.

𝜅𝑛(𝑡, 𝑧, 𝑙) = −𝜕𝑙
[

𝐺(𝑡, 𝑧)𝑛(𝑡, 𝑧, 𝑙)
]

+ 𝐵(𝑡, 𝑧) ⋅ 𝛿(𝑙) (9)

3.3.2. Nucleation
In the zeolite community, there is a debate about the nature of

nucleation in zeolite crystallization. Homogeneous [21], heteroge-
neous [37], or autocatalytic [37–39] processes are assumed. Further-
more, alternatives approaches assume the formation of a secondary
amorphous phase that induces nucleation [1]. In this work, the nu-
cleation is assumed to take part at the inner surface of the amorphous
solid, analogous to the approach developed by Nikolakis et al. [22].
However, this requires precise knowledge about the pore distribution
in the amorphous gel network, which is not measurable in reality.
Furthermore, the structure of the model equations which involves
the calculation of a squareroot over a logarithmic ratio can lead to
infeasible solutions in case of numerical errors, which makes it difficult
to include in distributed parameter systems and hard to use in opti-
mization algorithms. Therefore, the model was modified. A description
of this novel nucleation model is given in the following. A detailed
derivation is provided in Appendix A.1.

The heterogeneous nucleation rate is described by (10), as a func-
tion of an active inner surface of the amorphous solid 𝑆. The effect
of the mass transfer to the active inner surface is neglected since
the simultaneous dissolution on the surface leads to short diffusion
lengths. Therefore, the nucleation step determines the overall nucle-
ation rate. The nucleation rate 𝐵 is assumed to depend also linearly on
the supersaturation, which is the difference between the equilibrium
concentration and the concentration of the zeolite in the liquid 𝐶𝑒𝑞,𝑧𝑒𝑜.
The particle size of the nuclei is assumed to be zero.

𝐵(𝑡, 𝑧) = 𝑘𝐵(𝑡, 𝑧) ⋅ 𝑆(𝑡, 𝑧)⋅(𝐶𝑠𝑜𝑙(𝑡, 𝑧) − 𝐶𝑒𝑞,𝑧𝑒𝑜) (10)

For the description of the evolution of the inner surface of the
amorphous solid 𝑆 a description of the evolution of the inner pores
is used similar to [34]. It is assumed that the active surface is a
result of non-overlapping cylindrical pores with the size distribution
𝜍(𝑟) dependent on the pore radius 𝑟. The evolution of the pore size
distribution 𝜍(𝑟) can be described using the population balance (11).

𝜕 𝜍(𝑡, 𝑟) + 𝜕
[

𝜍(𝑡, 𝑟)𝑑𝑟
]

= 𝛤 (𝑡, 𝜍) (11)
4

𝑡 𝑟 𝑑𝑡
Under the assumption that the amount that is dissolved in the consid-
ered pores is much smaller than the overall dissolved amorphous solid,
the general loss term 𝛤 (𝑡, 𝜍) is defined by the dissolution reaction, and
the population balance Eq. (11) can be solved using the method of
moments. A detailed description of the nucleation model is given in
Appendix A.1. The evolution of the inner volumetric surface area of the
amorphous solid pore network along the reactor 𝑆 can be described by
the reaction rate (12).

𝜅𝑆 (𝑡, 𝑧) = 𝑘𝐻 ⋅(𝐶𝑒𝑞,𝑎𝑚 − 𝐶𝑠𝑜𝑙(𝑡, 𝑧))⋅(𝐾𝐶𝐶𝑎𝑚(𝑡, 𝑧) − 𝑆(𝑡, 𝑧)) (12)

During the dissolution of the amorphous solid, the radii of the pores
n the amorphous gel network grow, which leads to larger surface areas.
n the other hand, with decreasing amount of solid, the surface area
ecreases. The nucleation rate curve depends on the positive constant
𝐶 . For low values of 𝐾𝐶 , the behavior is similar to heterogeneous
ucleation. For a high value of 𝐾𝐶 the nucleation behavior is similar

to an autocatalytic nucleation mechanism. A graphical visualization is
shown in Appendix A.2.

The predicted nucleation behavior matches that of the model by
Nikolakis et al. [22]. The rapid increase of the crystallinity after a
certain induction time in which almost no formation of crystals takes
place can be captured.

3.3.3. Growth
The growth rate 𝐺 of the zeolite particles is modeled as a linear

function of the supersaturation and independent of the particle size 𝑙.
These assumptions have been validated by Subotić and Antonić [40]
and Lechert and Kacirek [41].

𝐺(𝑡, 𝑧) = 𝑘𝐺(𝑡, 𝑧)⋅(𝐶𝑠𝑜𝑙(𝑡, 𝑧) − 𝐶𝑒𝑞,𝑧𝑒𝑜) (13)

The kinetics of the zeolite crystallization is dependent on the tem-
erature of the solution 𝑇𝑅. This influence is described by an Arrhenius
ependency:

𝑖 = 𝑘𝑖,0 exp

(

−𝐸𝐴,𝑖

𝑅𝑇𝑅

)

𝑖 = 𝐻,𝐵,𝐺, (14)

Since the growth rate is independent of the particle size 𝑙, the popula-
ion balance Eq. (9) can be transformed using the method of moments
here the moments are given by (15).

𝑖 = ∫ ∞
0 𝑙𝑖𝑛𝑑𝑙 (15)

The resulting reaction rates for the different moments 𝜇𝑖 are shown
in Eq. (16):

𝜅𝜇0 (𝑡, 𝑧) = 𝐵(𝑡, 𝑧) (16a)

𝜅𝜇1 (𝑡, 𝑧) = 𝐺(𝑡, 𝑧) ⋅ 𝜇0 (16b)

𝜅𝜇2 (𝑡, 𝑧) = 2 ⋅ 𝐺(𝑡, 𝑧) ⋅ 𝜇1 (16c)

𝜅𝜇3 (𝑡, 𝑧) = 3 ⋅ 𝐺(𝑡, 𝑧) ⋅ 𝜇2. (16d)

he molar crystallization rate �̇�𝑧𝑒𝑜 then results as

̇ 𝑧𝑒𝑜(𝑡, 𝑧) =
𝜋
6𝑣𝑚

𝜅𝜇3 (𝑡, 𝑧). (17)

The crystallinity of the solid 𝑋 is defined in (18) as the ratio of
he mass of the crystalline phase over the total mass of solids. The
mall number 𝜖 is added to avoid numerical issues when simulating
he startup of the reactor, since then 𝐶𝑧𝑒𝑜(𝑡, 𝑧) and 𝐶𝑎𝑚(𝑡, 𝑧) are small.

(𝑡, 𝑧) =
𝐶𝑧𝑒𝑜(𝑡, 𝑧)

𝐶𝑧𝑒𝑜(𝑡, 𝑧) + 𝐶𝑎𝑚(𝑡, 𝑧) + 𝜖
(18)

The ratios of the moments represent the relevant mean the particle sizes

𝑙𝑖,𝑗 =
𝜇𝑖 . (19)

𝜇𝑗
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To improve the numerical properties of the model, the concentra-
tions are scaled. The concentration of the amorphous solid and the
concentration of the dissolved solid mass are scaled with the overall
solid concentration. The particle size is scaled such that the calculated
characteristics defined by Eq. (19) at complete conversion are close to
one. Furthermore, the moment equations are scaled such that the third
moment is equal to the scaled zeolite concentration. The inner surface
of the particles is scaled such that the initial inner zeolite surface area
is equal to one. The scaling is discussed in more detail in Appendix B.2.

3.4. Summary

The complete model of the reactor consists of the convection–
diffusion balance Eq. (1) for the mass balances with the reaction terms
for the different components according to (8), (7), (12), (16a)–(16d)
coupled with the energy balances (3), (4), (5). The implemented scaled
model equations are summarized in Appendix B.

The resulting system of 10 partial differential equation is solved
using the method of lines. The spatial domain is discretized using the
weighted essentially nonoscillatory (WENO) discretization scheme [42,
43] on 104 grid points. This approximation is used due to its lower
tendency to produce oscillating solutions for convection dominated sys-
tems. After discretization, the resulting model is a system of nonlinear
ordinary differential equations for the conserved quantities 𝑇𝑅, 𝑇𝑤, 𝑇𝐽 ,
𝐶𝑎𝑚, 𝐶𝑠𝑜𝑙 , 𝑆, 𝜇0, 𝜇1, 𝜇2, 𝜇3 along the reactor length, which results in 1040
state variables. In the following, the model will be referred to by
(20), with 𝑥 as states and 𝑢 as the inputs, which are the set-point
temperatures of the three heaters 𝑇ℎ and the throughput 𝐹 of the
eactor.

̇ = 𝑓 (𝑥, 𝑢) (20)

The model has been implemented in the CasADi [44] framework in
python programming environment.

. Model validation

.1. Methodology

The different elements of the model, mass transfer, energy transfer,
nd the zeolite formation kinetics, are verified separately. First, several
nknown parameters of the model are fitted to experimental data. Then
he fit is validated using a statistical analysis. For the parameter fit, the
east squares optimization problem (21) is solved.

in
𝑝,𝑥

𝑁𝑒𝑥𝑝
∑

𝑘

𝑁𝑚𝑒𝑎𝑠,𝑘
∑

𝑗

𝑁𝑡𝑖𝑚𝑒,𝑘,𝑗
∑

𝑖

1
𝑁𝑒𝑥𝑝𝑁𝑚𝑒𝑎𝑠,𝑘𝑁𝑡𝑖𝑚𝑒,𝑘,𝑗

(

𝑦𝑘,𝑗 − �̂�𝑘,𝑗,𝑖
𝜎𝑘,𝑗,𝑖

)2

(21a)

s.t.

�̇�𝑘(𝑡) = 𝑓𝑘(𝑥𝑘(𝑡), 𝑢𝑘(𝑡), 𝑝) ∀𝑘 ∈ [0, 𝑁𝑒𝑥𝑝] (21b)
𝑦𝑘,𝑗,𝑖 = ℎ𝑘,𝑗 (𝑥𝑘(𝑡𝑖), 𝑢𝑘(𝑡𝑖), 𝑝) ∀𝑘 ∈ [0, 𝑁𝑒𝑥𝑝],

∀𝑗 ∈ [0, 𝑁𝑚𝑒𝑎𝑠,𝑘],∀𝑖 ∈ [0, 𝑁𝑡𝑖𝑚𝑒,𝑘,𝑗 ]. (21c)

In (21) the model parameters 𝑝 are optimized such that the mean
squared error between the model predictions 𝑦𝑘,𝑗,𝑖 and the measure-
ments �̂�𝑘,𝑗,𝑖, scaled with the variances of the measurement errors 𝜎𝑘,𝑗,𝑖 is
minimized. The predicted measurements are calculated from the model
states by using the functions ℎ𝑘,𝑗 . There is a total number 𝑁𝑒𝑥𝑝 of
experiments with 𝑁𝑚𝑒𝑎𝑠,𝑘 different measurements 𝑗 for all 𝑁𝑡𝑖𝑚𝑒,𝑘,𝑗 time
points 𝑖.

The optimization problem is implemented in a python environ-
ment. A single-shooting approach is used as a solution approach for
the dynamic optimization problem. The ordinary differential model
equations are solved with the IDAS [45] solver with the CasADI [44]
interface. The (low dimensional) optimization problem is solved using
the derivative-free local optimizer [46] which uses a Nelder–Mead-type
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algorithm. The reason for the usage of this solver with a comparably
slow convergence rate is the robustness against local minima which
are present due to the dense structure of the optimization problem and
due to the measurement errors. Higher order solvers, e.g., Levenberg–
Marquardt, were found to be more prone to find suboptimal solutions,
which can be explained by the approximation errors of the involved
calculations of derivatives by finite differences. To minimize the effect
of local minima, the solver is started from different initial points.

The results are then validated using statistical methods. The match
between the observations and the estimates is tested using the reduced
chi-squared value. The goodness of fit is validated with Pearson’s chi-
squared test [47]. The covariance matrix 𝛴 of the fitted parameters is
estimated by (22).

𝛴−1 = 𝐽 (𝑝∗)𝑇 𝐽 (𝑝∗) (22)

𝐽 is the Jacobian of the vector of residuals, scaled with the standard
deviations, with respect to the measurements evaluated at the optimal
solution 𝑝∗. The confidence intervals for the fitted parameters are
calculated using the equation below.

𝛥𝑝𝑖 = 𝑡𝛼,𝜈
√

𝛴𝑖,𝑖 (23)

Where 𝑡𝛼,𝜈 is the quantile of the t-distribution with the confidence level
𝛼 and 𝜈 degree of freedom. For the statistical tests and the confidence
intervals, the confidence level is 95%.

4.2. Mass transport

For the zeolite reaction, the most important mass transport related
quantity is the transport of the zeolite particles since the concentration
of dissolved solid in the mother liquor is comparably low, and the
dissolution is fast. Therefore, the residence time distribution of the solid
was measured during the startup of the reactor for several experiments
with different throughputs. The frequency of oscillation (1.5Hz) and
amplitude (34mm) of oscillation were kept constant. The correlations
for the back mixing from the literature [48,49] propose a almost linear
dependency of the Reynolds number on the Schmidt number, which
leads to a constant Peclet number with changing throughput. Therefore,
we use a constant Peclet number independent of the flow rate. For a
variation of the frequency or the amplitude of the oscillation of the
COBR, which is not considered in this work, the Peclet number has to
be adapted accordingly to the reported dependencies. The measured
concentration of solid over time is normalized with the expected solid
concentration and with the residence time. The solution of the least
squares minimization problem with the estimated confidence bound is

𝑃𝑒 = 240.2 ± 32.02. (24)

The fit was performed from 10 different initial points, sampled from a
Latin hypercube within a reasonable parameter range. All optimization
runs lead to the same solution. The reduced chi-square value is 0.826,
which is close to one, which indicates that the expected noise matches
the observed error. This was validated in Pearson’s chi-squared test, in
which the null hypothesis was accepted that the distributions are the
same. The fitted and the measured relative concentrations as a result of
a step input change of solid concentration for the different experiments
are displayed in Fig. 3, which displays a good fit of the experimental
findings and the model.

4.3. Energy balance

In order to parameterize the description of the thermal behavior, the
model was fitted to measured data from five different dynamic experi-
ments. In these experiments, the heater temperatures were changed and
the response of the temperature along the reactor was measured. The

temperature is measured by 11 different temperature measurements



Chemical Engineering and Processing - Process Intensification 198 (2024) 109728R. Semrau et al.
Fig. 3. Fitted and experimentally measured concentration of solid particles as a result
of step input change of solid concentration for different flowrates.

Table 1
Correlation coefficients from the fit
of the thermal parameters.

Correlation coefficients

𝑘𝐴𝑅,𝑤,𝑏

𝑘𝐴𝑅,𝑤,𝑓 −0.00189

which are equally distributed along the reactor length in the reaction
solution. In the parameter fit, only the heat transfer coefficient from
the reaction solution to the wall 𝑘𝐴𝑅,𝑤 is adjusted. It was observed that
𝑘𝐴𝑅,𝑤 changes over the reactor length. This is most probably due to the
changing properties of the suspension in the reactor. The viscosity of
the suspension changes according to a complicated pattern within the
reactor. First, it increases from a medium viscosity to a high viscosity
at the beginning of the reactor and then drops to a lower viscosity at
the end of the reactor. In order to decrease the complexity, we assume
that, the heat transfer coefficient changes at the beginning of the last
heating section, in which the reaction medium is cooled. Upstream of
this point, the value 𝑘𝐴𝑅,𝑤,𝑏 is used, downstream of this point the value
𝑘𝐴𝑅,𝑤,𝑓 . The heat transfer coefficients from jacket to wall 𝑘𝐴𝑗,𝑤 and
the loss to the environment are approximated by standard correlations.
The sensitivity of the measured temperatures to these parameters is
low. Therefore, they are not included in the parameter fit. The solution
of the least squares minimization problem, including the estimated
confidence bound, is given in (25). The fit was performed from 10
different initial points within a plausible parameter range, sampled
from a Latin hypercube. All runs led to the same solution.

𝑘𝐴𝑅,𝑤,𝑏 = 228.673 ± 0.409 W/m2K (25a)

𝑘𝐴𝑅,𝑤,𝑓 = 983.122 ± 5.694 W/m2K (25b)

The reduced chi-square value is 0.891, which is close to one, which
indicates that the expected noise matches the observed error. This was
validated using Pearson’s chi-squared test, in which the null hypoth-
esis was accepted that the distributions are the same. The correlation
coefficient between the two fitted parameters fit is shown in Table 1.
The correlation coefficient is very close to zero, which indicates that
the uncertainties of both parameters are not correlated.

The fitted and the measured temperatures for one of the experi-
ments are displayed in Fig. 4, which shows a good fit of the experi-
mental findings and the model. The corresponding input trajectories are
shown in the orange plots. The deviations at the start of the experiment
occurred due to the mismatch in the initialization of the temperatures
along the reactor. Deviations close to the inlet of the reactor are caused
by a variation in the reactor inlet temperature. The dynamic responses
to the changes of the heater temperatures are described accurately.
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4.4. Zeolite crystallization

Finally, the model of the zeolite crystallization was validated. First,
model predictions were fitted to seven different experiments. In these
experiments, different operating points, defined by heater temperatures
and the throughput, including dynamic step changes, were considered.
The zeolite properties were measured in an offline fashion by taking
samples at different positions of the reactor. The crystallinity was
measured by X-ray diffraction. The primary particle size of the zeolites
was measured by laser diffraction. For more details about the zeolite
characterization, the reader is referred to Ramire. Mendoza et al. [17].

In the parameter fit, only a limited number of selected kinetic
parameters of the zeolite crystallization process were fitted. The dis-
solution reaction is comparably fast. The concentration of unit cells in
the solution is therefore constant in the nucleation phase and in most
of the growth phase. Therefore, the influence of the dissolution rate
constant 𝑘𝐻 and of the activation energy 𝐸𝐴,𝐻 cannot be observed,
until the reaction becomes rate-determining, which does not happen in
the considered temperature range. Therefore, this value is taken from
the literature [36].

It was observed that the primary particle size of the zeolite particles
was constant within the observed temperature range. This implies a
constant ratio of nucleation and growth. Furthermore, the amount of
data does not allow for the estimation of individual activation energies
of nucleation and growth. Therefore, we assumed the same activation
energy for nucleation and growth. The nucleation and growth rates
𝑘𝐵 , 𝑘𝑔 , the activation energy of nucleation and growth 𝐸𝐴,𝑔 , and the
kinetic factor for the gel transition 𝐾𝑐 were fitted to the experimental
data. To simplify the fitting problem, the rates 𝑘𝐵 , 𝑘𝑔 are fitted at a
predefined temperature 𝑇𝑓 = 373K. The solution of the least squares
minimization problem, including the estimated confidence bounds, is
given in (26). The fit was performed from 23 different initial points
within a reasonable parameter range distributed on a Latin hypercube.
The optimal solution was found in 9 of these runs. Therefore, this
problem is more prone to local optima in contrast to the previously
discussed problems. Since the optimal solution was found multiple
times from different initial points, the result is considered as reliable.

𝑘𝐵(𝑇𝑓 ) = 0.0360649 ± 0.001171 s−1 (26a)

𝑘𝑔(𝑇𝑓 ) = 0.0268283 ± 0.0003366 s−1 (26b)

𝐾𝑐 = 0.00349242 ± 0.03198 (26c)

𝐸𝐴,𝑔 = 78323.6 ± 726.0 J/mol (26d)

The large confidence interval of the kinetic constant 𝐾𝑐 is due to its rel-
atively small value. Therefore, the influence of the increasing surface is
rather small in comparison to the overall decrease due to the consump-
tion of the amorphous solid. The observed activation energy matches
data from literature, which gave activation energies of 66 kJ/mol and
72 kJ/mol [50]. The reduced chi-square value is 1.11, which is close
to one, which indicates that the expected noise matches the observed
error. This was validated by Pearson’s chi-squared test, in which the
null hypothesis was accepted that the distributions are the same. The
correlation coefficient between the two fitted parameters fit is shown
in Table 2. Since the values are tightly coupled, the corresponding
correlation coefficient are high, especially of the nucleation and growth
rate, but also of the growth rate and the activation energy.

The fitted and the measured concentrations for one of the exper-
iments are displayed in Fig. 5. The corresponding input trajectories
are shown in the orange plots. The figure displays a good fit of the
experimental findings and the model. The deviations at the start-up
of the reactor are due to the inevitable uncertainties in this phase.
For example, the small deviations in the timing of the sampling are
quite visible. Furthermore, the modeling assumptions e.g., constant
solid content, are not valid during the reactor startup. The dynamics
after the startup are predicted accurately.
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Fig. 4. Fitted and experimentally measured evolution of the temperatures along the reactor as a response to a step change of the heater temperatures.
Fig. 5. Fitted and experimentally measured evolution of the crystallinity (𝑋) along the reactor and of the mean particle size of the primary particles from the crystalline zeolite.
Table 2
Correlation coefficients from the fit of the kinetic parameters.

Correlation coefficients

𝑘𝐵 𝑘𝑔 𝐾𝑐

𝑘𝑔 −0.693149 – –
𝐾𝑐 −0.100258 0.0602252 –
𝐸𝐴,𝑔 0.0466702 0.413624 −0.256534

The validity of the developed model is demonstrated for the pilot-
scale plant. For the description of an industrial-scale reactor, the model
parameters have to be adapted and possibly further effect may have to
be included.

5. Quantification of the model uncertainty

5.1. Methodology

In the previous chapter, it was shown that the system can be
described accurately by the process model. However, due to structural
7

mismatches and disturbances, the model predictions deviate from the
real behavior. To quantify the deviations between the model and the
real behavior, the covariance matrix of the parametric uncertainty
at a steady state is determined. The steady state is considered here
instead of the dynamic description since we can use the automatic
differentiation of CasADi to get accurate estimates of the Jacobian
and to avoid mismatches due to sample time errors. The parametric
covariance matrix with respect to the uncertain parameters is computed
using Eq. (27).

𝛴−1
𝐸 =

(

𝜕𝑦
𝜕𝑥𝑠𝑠

𝜕𝑥𝑠𝑠
𝜕𝑝

)𝑇

⋅ 𝛴−1
𝑦 ⋅

(

𝜕𝑦
𝜕𝑥𝑠𝑠

𝜕𝑥𝑠𝑠
𝜕𝑝

)

(27)

in which 𝜕𝑥𝑠𝑠∕𝜕𝑝 is the sensitivity matrix of the steady state with respect
to the parameters. This is projected via the Jacobian of the measure-
ment functions from the steady states 𝜕𝑦∕𝜕𝑥𝑠𝑠 to the measurements. The
covariance of the measurements 𝛴𝑦 is estimated from the experimental
data of the steady-states. The parameters used to describe the plant-
model mismatch are different from the previously identified parameters
since the effect of external conditions, and disturbances should also be
captured. Furthermore, we want to reduce the number of parameters
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needed to describe the uncertainty. The uncertain parameters were cho-
sen as a combined nucleation and crystallization rate (𝜂) and offsets of
the heater temperatures (𝛥𝑇ℎ,𝑖), and a deviation of the inlet temperature
from the assumed value (𝛥𝑇𝑅,𝑖𝑛). The following equations of the model
are modified

�̃�(𝑡, 𝑧) = 𝐺(𝑡, 𝑧) ⋅ 10𝜂 (28a)

�̃�(𝑡, 𝑧) = 𝐵(𝑡, 𝑧) ⋅ 10𝜂 (28b)

�̃�𝑅,𝑖𝑛 = 𝑇𝑅,𝑖𝑛 + 𝛥𝑇𝑅,𝑖𝑛 (28c)

�̃�ℎ,𝑖 = 𝑇ℎ,𝑖 + 𝛥𝑇ℎ,𝑖 ∀𝑖 ∈ [1, 3]. (28d)

The parameter vector 𝑝 contains the uncertain parameters 𝑝 = (𝜂, 𝛥𝑇𝑅,𝑖𝑛,
𝛥𝑇ℎ,1, 𝛥𝑇ℎ,2, 𝛥𝑇ℎ,3). To capture the effect of the parametric uncertainty
on the system response, the unscented transform is used. Furthermore,
the unscented transform is used to calculate the expected deviation
and the expected variation of the system response from the nominal
trajectory using the sigma points of the error parameter covariance
matrix.

5.2. The unscented transform

The unscented transform [25] can be used to approximate the
propagation of a Gaussian probability distribution 𝑝 of dimension 𝑁
through a nonlinear function, using the 2𝑁 + 1 sigma points 𝑝𝑖.

𝑝 ∼  (�̄�, 𝛴) (29)

The sigma points can be calculated using Eq. (30). The square root is
the lower Cholesky decomposition of the covariance matrix 𝛴. The in-
dex 𝑘 represents the 𝑘th column. The parameter 𝜖 is a tuning parameter
and determines the spread of the sigma points.

𝑝0 = �̄� (30a)

𝑝𝑘 = �̄� ±
√

(𝑁 + 𝜖)𝛴𝑘 ∀𝑘 ∈ [0, 2𝑁] (30b)

The expected value and the covariance of the resulting probability
distribution after the nonlinear transformation 𝑔 can be estimated using
the Eqs. (31), and (32)

E[𝑔(𝑝)] ≈
2𝑁
∑

𝑘=0
𝑤𝑚,𝑘𝑔(𝑝𝑘) (31)

𝑐𝑜𝑣
[

E[𝑔(𝑝)] − 𝑔(𝑝)
]

≈
2𝑁
∑

𝑘=0
𝑤𝑐,𝑘(𝑔(𝑝𝑘) − 𝑔(𝑝))(𝑔(𝑝𝑘) − 𝑔(𝑝))𝑇 . (32)

The weights 𝑤𝑚,𝑘 and 𝑤𝑐,𝑘 are calculated using the Eqs. (33)–(34)
analogously to [25].

𝑤𝑚,0 =
𝛼2 ⋅ (𝑁 + 𝜅) −𝑁

𝛼2 ⋅ (𝑁 + 𝜅)
(33a)

𝑤𝑚,𝑘 = 1
2𝛼2 ⋅ (𝑁 + 𝜅)

∀𝑘 ∈ [1, 2𝑁] (33b)

𝑤𝑐,0 =
𝛼2 ⋅ (𝑁 + 𝜅) −𝑁

𝛼2 ⋅ (𝑁 + 𝜅)
+ (1 − 𝛼2 + 𝛽) (34a)

𝑤𝑐,𝑘 = 1
2𝛼2 ⋅ (𝑁 + 𝜅)

∀𝑘 ∈ [1, 2𝑁] (34b)

The distribution of the uncertain parameters is assumed to be close to
a Gaussian distribution, therefore the parameters 𝜅, 𝛽 are set to the
recommended values for such cases: 𝜅 = 0, 𝛽 = 2. The spread of the
sigma points 𝛼 is chosen to be 𝛼 = 1.54, such that the sigma points are
on the boundary of an ellipsoid that contains ≈ 96.3% of the parameter
realizations if they follow a normal distribution.
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Fig. 6. Nominal profiles and profiles at the sigma point for a steady-state operation
and in comparison to experimental data.

5.3. Quantification of the plant-model mismatch at steady state

The values of the covariance matrix from the uncertain parameters,
the combined nucleation and crystallization rate, the offsets of the
heater temperatures, and the deviation of the inlet temperature, are
calculated as described in Section 5.1. The sigma points are calculated
from this covariance matrix. The simulated nominal steady-state profile
of the plant and the simulation results with the parameter values being
at the sigma points are shown in Fig. 6 in comparison to multiple
experiments of the same steady-state. The particle size is omitted here
since it is not sensitive as product quality indications. The different
experiments are displayed in different colors. The comparison shows
that the model prediction and the experimental data match well in
the steady state. Furthermore, it is visible that the chosen operation
point is suboptimal. The operation point is too conservative since the
crystallization is already completed in the middle of the reactor. The
rest of the reactor is not used for the crystallization reaction. From
the plot, it can also be seen that the additional space is not needed
since the minimum of the predicted product quality according to the
sigma points is reaching the required product quality at around 28 m,
which is also supported by the crystallinity measurements at that point.
Therefore, the shown operation point can be improved, the throughput
can be increased or the applied energy input can be decreased, or the
process can be performed in a smaller reactor set-up.

5.4. Validation of the quantification of the plant-model mismatch in dy-
namic simulations

The error quantification led to a set of scenarios for the behavior
at the steady state. As the next step, the error in the prediction of the
dynamic behavior is analyzed. The nominal system trajectory and the
spread of the predictions for the parameters taking values at the sigma
points are displayed in Fig. 7 in comparison to experimental data. The
respective input trajectories are shown in the orange plots. The error
of the model is captured well by the sigma points. The uncertainty of
the crystallinity trajectory lies within the envelope of the trajectories
that are obtained for the parameters taking values at the sigma points.
The spread of the predictions for the different sigma points is large
in the region of intermediate crystallinity. At low crystallinity and at
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Fig. 7. Nominal and sigma point based predicted trajectories of the conversion and the reactor temperature of the COBR and experimental data.
full conversion, the spread decreases. Furthermore, the spread that
is predicted using the sigma points is different for the positive and
the negative direction. This is a major advantage of performing the
error propagation using the unscented transform by which this behavior
can be predicted correctly. The thermal behavior is also be captured
correctly for the most part. However, there is a visible deviation during
the startup of the rector so the model cannot be considered to be
reliable at the startup. This however does not affect the computation
of the optimal operation. There is no visible nonlinearity in the error
propagation for the thermal behavior and the temperature deviation
can be described well. The description of the plant-model mismatch
is thus also valid for dynamic set-point changes, except for the initial
phase at reactor startup.

6. Robust optimization of the operation of the COBR

6.1. Problem statement

In the following, the steady-state performance of the zeolite crys-
tallization process in the COBR is optimized such that at a given
throughput, the product quality constraints are fulfilled for all scenar-
ios (sigma points) with minimum expected energy input. The energy
consumption of the process is defined by the temperature difference
between heating and cooling fluid at the inlet and the outlet of the
heaters. It is assumed that for heating and cooling, the same external
input of energy is required, therefore absolute values are used in (35).
Additionally, the energy input via the material flow is considered as
shown in Eq. (35), in which 𝑇𝑅(⋅, 0) is the inlet temperature of the
reactor and 𝑇𝐸 is the environment temperature.

𝐸(𝑥, 𝑢, 𝑝) =
3
∑

𝑖=1
�̇�𝐽 𝑐𝑝,𝐽 |𝑇𝐽 (⋅, 𝑧ℎ,𝑜𝑢𝑡,𝑖) − 𝑇ℎ,𝑖|

+ �̇�𝑅𝑐𝑝,𝑅 ⋅ |𝑇𝑅(⋅, 0) − 𝑇𝐸 | (35)

The formulation of the optimization problem is stated in (36). The
approximation of the expected energy input by the unscented transform
9

is minimized by summation over the sigma points, see (36a).

min
𝑢,𝑋

[

E(𝐸(𝑥, 𝑢, 𝑝)) ≈
2𝑁
∑

𝑘=0
𝑤𝑚,𝑘𝐸(𝑥𝑘, 𝑢, 𝑝𝑘)

]

(36a)

s.t.

0 = 𝑓 (𝑥𝑘, 𝑢, 𝑝𝑘) ∀𝑘 ∈ [0, 2𝑁] (36b)

382.15 ≥ 𝑇𝑅,𝑘(⋅) ∀𝑘 ∈ [0, 2𝑁] (36c)

353.15 ≥ 𝑇𝑅,𝑘(𝐿) ∀𝑘 ∈ [0, 2𝑁] (36d)

0.98 ≤ 𝑋𝑘(𝐿) ∀𝑘 ∈ [0, 2𝑁] (36e)

393.15 ≥ 𝑇ℎ,𝑖 ∀𝑖 ∈ [1, 3] (36f)

𝐹𝑓𝑖𝑥 = 𝐹 ∀𝑖 ∈ [1, 3] (36g)

The process is constrained to be at the steady state for all sigma points
by (36b). The temperature of the reaction solution should be lower than
382.15 K to suppress the formation of undesired zeolite phases. This is
enforced for all sigma points by (36c). Furthermore, the outlet temper-
ature has to be lower than 353.15 K for the downstream processing.
Similarly, the desired crystallinity of 98% at the reactor outlet should
be reached for all sigma points, see (36e). The heater temperatures of
the three heaters are limited to 393.15 K to avoid bubble formation in
the reactor with a fixed pressure (36f). The throughput of the reactor is
fixed (36g), but the optimization is performed for multiple throughputs
between 34.2 kg/h, which is the lower limit due to the sedimentation
of the particles, and 91.2 kg/h, which is the maximal stable operating
point of the feed pumps. Since the throughput of the reactor is fixed,
the degrees of freedom are the heater temperatures.

6.2. Implementation

The optimization is solved in CasADI [44] in a python framework
by the NLP solver Ipopt [51], including the linear solver HSL MA27
[52]. For a smooth approximation of the absolute value in the objective
function, the tanh sigmoid function is used, as shown in Eq. (37):

|𝑥| ≈ tanh(𝑥 ⋅ 𝛽) ⋅ 𝑥. (37)



Chemical Engineering and Processing - Process Intensification 198 (2024) 109728R. Semrau et al.
Fig. 8. Optimized steady state profiles for the nominal model and for the model
predictions with the sigma points for a low throughput of 34.2 kg/h.

Fig. 9. Optimized steady state profiles for the nominal model and for the model
predictions with the sigma points for a medium throughput of 57.0 kg/h.

The factor 𝛽 determines the accuracy of the approximation. A value of
100 was found to be sufficient.

6.3. Optimization results

The resulting optimal profiles of the crystallinity and of the reactor
temperature are shown in Fig. 8 for a low throughput (34.2 kg/h), in
Fig. 9 for a medium throughput (57.0 kg/h), and in Fig. 10 for the
highest possible throughput (91.2 kg/h).

The optimal operation of the reactor for all throughputs has the
following structure: The medium is heated up at the beginning of
the reactor. The maximal temperature is reached at the end of the
first heating section at 18.4 m. The second heating jacket is operated
at a lower temperature. The temperature therefore drops until an
10
Fig. 10. Optimized steady state profiles for the nominal model and for the model
predictions with the sigma points for the highest possible throughput of 91.2 kg/h.

equilibrium temperature is reached at approximately 25 m. With the
third heater, the reaction medium is cooled down further to satisfy the
specifications of the outlet temperature.

This structure is the same for all throughputs, however in the lowest
throughput, the heating medium is only heated such that the highest
temperature among the cases described by the sigma points has a max-
imum at around 375 K, therefore the maximum temperature constraint
is not active in this case. In the medium and high throughput cases,
the reactor content is heated to the maximum feasible temperature for
the highest of the sigma point based predictions. Furthermore, with in-
creasing throughput, the temperature of the second heater is increased,
which leads to a smaller temperature variation at the beginning of the
second heating area. For the high throughput case, the temperature
profile is almost constant in this area.

The crystallinity profiles depend on the temperature profiles. For
all optimal operating points, only the quality constraint for the case
with the lowest crystallinity is active. For higher throughputs, the
crystallization is shifted towards the end of the reactor. Furthermore,
for higher throughput, the spread of the trajectories decreases, which
indicates that the process is more robust at higher throughputs.

6.4. Evaluation of the probability of constraint violations

Strictly speaking, meeting the constraints for the sigma points does
not ensure to meet a probabilistic specification or robust constraint
satisfaction over the range of all parameter uncertainties. Therefore, in
this section, we investigate the probability of constraint violations for
the optimized operating points precisely. The steady state profiles are
calculated for 100,000 parameter realizations drawn from a multivari-
ate normal distribution with the given parameter covariance matrix.
The evaluation leads to a feasibility of the low throughput operating
point for 99.66% of the sampled parameter realizations, for the medium
throughput operating point for 99.84%, and for the high throughput
operating point for 99.70%. The reason that these values are higher
than the probability that underlies the choice of the sigma points
is because the inequality constraints only become active at specific
combinations of parameters, e.g., a very high crystallization rate does
not lead to a constraint violation. In conclusion, the application of the
calculated optimal operating points to the process can be expected to
lead to an admissible operation in all cases.
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Fig. 11. Nominal and sigma point based predictions of steady state profiles and
measurements of the steady state profile for the optimized operating conditions at
a low throughput of 34.2 kg/h.

Fig. 12. Nominal and sigma point based predictions of steady state profiles and
measurements of the steady state profile for the optimized operating conditions at
a medium throughput of 57.0 kg/h.

6.5. Application to the real process

In the following, the results of applying the optimal operating points
to the real pilot scale process are presented. The resulting profiles and
the experimental results are shown in Fig. 11 for the low throughput
(34.2 kg/h), in Fig. 12 for the medium throughput (57.0 kg/h), and in
Fig. 13 for the high throughput (91.2 kg/h).

The suitability of the operating points is confirmed. The operating
points do not violate the requirements on the crystallinity or on the
maximal temperatures. Furthermore, the higher stability of the process
at the operating point with the maximal throughput, which was already
observed in the optimization results, is also visible in the experimental
11
Fig. 13. Nominal and sigma point based predictions of steady state profiles and
measurements of the steady state profile for the optimized operating conditions at
a high throughput of 91.2 kg/h.

results since the spread of the measured crystallinity is lower in this
case. At the pilot plant, the optimum operation could not be imple-
mented exactly. Due to technical difficulties, the third heater inlet
temperature had to be set to a lower value of 321.15 K, which leads to a
higher drop in the temperature at the end of the reactor. This influences
only the end of the crystallization process, but it is visible in the results
since the simulated product quality does not reach the desired value for
all sigma points. The real process however meets the specification.

The successful application proves the extrapolation capability of the
rigorous model and the value of the robust optimization method. The
model was developed and fitted mainly with data from the medium
throughput operating point, and no feasible operating point at high or
low throughputs had been identified previously. The energy demand,
estimated from the sigma point based model predictions, of the opti-
mized operating point at medium throughput is 6.76 kW. The estimated
expected energy demand at the original operating point with the same
throughput, as shown in Fig. 6, is 7.62 kW, which saves approximately
11.3% of the energy input.

This however is only a lower bound to the possible improvement
as the optimal operation could not be implemented fully due to the
problem with the third heater. Further potential lies in the applica-
tion of feedback control techniques which can reduce the effect of
model plant mismatches. This is promising especially for the thermal
system, since the temperature measurements are already available. In
the case of persistent model plant mismatch which is not caused by
stochastic fluctuations, real time optimization with modifier adaptation
techniques can be applied to improve the operation of the plant as
demonstrated by Cegla et al. [53] for reactive extrusion.

7. Conclusion

This work presents the modeling, model validation, and robust
optimization to calculate optimal steady-state operating points for an
improved performance of the novel continuous zeolite production pro-
cess in a continuous oscillatory baffled reactor (COBR). First, the pro-
cess set-up, the quality and production constraints and the control
variables with their individual bounds were introduced. Afterwards, the
modeling of mass transport, energy transport and zeolite crystallization
reaction in the COBR was presented. The mass transport in the COBR
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is described by the axial dispersion model. The zeolite crystallization
is described by a reaction term in the mass transport PDE. The zeolite
crystallization model is a first principle model based on the solution
the population balances with the method of moments. The nucleation
model is a novel modified version of the heterogeneous nucleation
model developed by Nikolakis et al. [22].

The model parameters were fitted to experimental data for the mass
transport, the energy transport, and transfer, and the zeolite reaction
individually. The validity of the fits were proven using Pearson’s chi-
squared test. Furthermore, the confidence intervals of the parameters
were evaluated. The model gives an accurate description of the plant
dynamics.

Afterwards, the plant-model mismatch was described by a para-
metric uncertainty of selected parameters. The unscented transform
was used to propagate the parametric error and to get an estimate of
the expected outcome and an estimate of the variation of the model
predictions.

The model with the parameter values obtained from the sigma
points of the unscented transform was then used in a robust opti-
mization in which operating points with the minimal expected energy
input are calculated that satisfy the constraints for all combinations of
parameter values that were considered. This introduces a simple way
to ensure the robustness of the operating point while avoiding unnec-
essary conservatism. The suitability of the approach was validated by
the experimental application to the pilot-scale COBR process. Three
optimal operating points at low, medium, and high throughputs were
identified. These were applied to the pilot scale process. All operating
points were proven to meet the specifications in the experiments.

Further work will use the dynamic model with the unscented-
transform-based error model for a robust dynamic operation e.g., in
transitions between operating points or in a demand side management
setting. Additionally, optimization including feedback control based on
online measurements will be used to reduce the fluctuations of the
process.
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Appendix A. Kinetic model

A.1. Evolution of the inner surface area

For the description of the evolution of the inner surface of the
amorphous solid 𝑆, a description of the evolution of the inner pores
is used similar to [34]. It is assumed that the active surface is a result
of non-overlapping cylindrical pores with the size distribution 𝜍(𝑟). 𝑟 is
the radius of the pores and 𝜍(𝑟) is the combined length of all cylindrical
pores with a given radius 𝑟 per unit volume of the reaction mixture. The
evolution of the pore size distribution 𝜍(𝑟) can be described using the
population balance (11)

𝜕𝑡𝜍(𝑡, 𝑟) + 𝜕𝑟
[

𝜍(𝑡, 𝑟)𝑑𝑟
𝑑𝑡

]

= 𝛤 (𝑡, 𝜍) (A.1)

with the boundary conditions:

𝜍(𝑡, 0) = 0 (A.2)

𝜍(𝑡,∞) = 0. (A.3)

The local dissolution is assumed to be proportional to the local pore sur-
face and is assumed to depend linearly on the concentration difference.
The rate of pore growth over time is expressed by Eq. (A.4).
𝑑𝑟
𝑑𝑡

= 𝑘𝑆 (𝑡) ⋅ (𝐶𝑠𝑜𝑙(𝑡) − 𝐶𝑒𝑞,𝑎𝑚) (A.4)

The dissolution of the amorphous solid is determined by two contri-
utions. The dissolution inside the considered pores and the dissolution
aused by other effects, e.g. by dissolution in other pores, or on the
uter surface area of the amorphous gel particles. Under the assumption
hat the amount which gets dissolved in the considered pores is much
maller than the overall dissolved amorphous solid the source term in
he population balance Eq. (A.1) can be expressed as:

(𝑡, 𝜍) = −𝑘𝐻 (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚)𝜍 (A.5)

ince the density of the equally distributed pores gets lower by the same
mount as the reaction medium itself. The resulting population balance
quation is given by Eq. (A.6).

𝑡𝜍(𝑡, 𝑟) + 𝑘𝑆 (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚)𝜕𝑟𝜍(𝑡, 𝑟)

= −𝑘𝐻 (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚)𝜍(𝑡, 𝑟) (A.6)

his equation can be solved using the method of moments. The zeroth
oment represents the overall pore length 𝐿𝐸 (𝑡). The inner surface area
can be computed from the first moment.

𝐸 = ∫

∞

0
𝜍(𝑡, 𝑟)𝑑𝑟 (A.7)

𝑆 = 2𝜋 ∫

∞

0
𝑟𝜍(𝑡, 𝑟)𝑑𝑟 (A.8)

he application of the integral transform to the population balance
q. (A.6) gives the following ODE description:

𝑡𝐿𝐸 = −𝑘𝐻 (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚)𝐿𝐸 (𝑡) (A.9)

𝜕𝑡𝑆 = 2𝜋𝑘𝑆 (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚)𝐿𝐸 (𝑡) − 𝑘𝐻 (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚)𝑆(𝑡) (A.10)

t can be seen that the linear differential Eq. (A.9) of the overall length
𝐸 is analogous to the governing equation of the evolution of the
morphous solid 𝐶𝑎𝑚(𝑡). Therefore, the following statement is valid:

(𝑡) = 𝐾 𝐶 (𝑡). (A.11)
𝜍 𝐿 𝑎𝑚
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Fig. A.14. Effect of the constant 𝐾𝐶 on the nucleation rate 𝐵(𝑡) and evolution of the
crystallinity.

Using (A.11), the differential equation of the total surface 𝑆(𝑡) can be
reformulated in the following way:

𝜕𝑡𝑆(𝑡) = 2𝜋𝑘𝑆 (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚)𝐾𝐿𝐶𝑎𝑚(𝑡)

− 𝑘𝐻 (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚)𝑆(𝑡) (A.12)

= (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚)(2𝜋𝑘𝑆𝐾𝐿𝐶𝑎𝑚(𝑡) − 𝑘𝐻𝑆(𝑡)) (A.13)

= 𝑘𝐻 (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚)(2𝜋𝑘𝑆𝐾𝐿𝑘
−1
𝐻 𝐶𝑎𝑚(𝑡) − 𝑆(𝑡)) (A.14)

= 𝑘𝐻 (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚)(𝐾𝐶𝐶𝑎𝑚(𝑡) − 𝑆(𝑡)). (A.15)

If the temperature dependencies of 𝑘𝑆 and 𝑘𝐻 are the same, this results
in a temperature independent constant 𝐾𝐶 .

A.2. Effect of the surface evolution on the crystal growth

The effect of the constant 𝐾𝐶 on the nucleation rate and the evo-
lution of the crystallinity is shown in Fig. A.14. The nucleation rate
is normalized to the maximal nucleation rate over time and time is
normalized to the time to reach full crystallinity. For low values of 𝐾𝐶 ,
the nucleation is similar to heterogeneous nucleation. The nucleation
rate has the maximum at the beginning of the reaction since there
the amorphous solid amount is maximal. With a higher value of 𝐾𝐶 ,
the nucleation profile changes, the maximum of the nucleation rate
is shifted towards the end of the crystallization process, which is
similar to an autocatalytic nucleation mechanism. The curvature of the
crystallinity increases with higher values of 𝐾𝐶 .

Appendix B. Dynamic model

B.1. Thermal model

To describe the thermal behavior of the process the partial differ-
ential equation system based on the Eqs. (3),(4), (5) has to be solved.
The parameters of these equations are given in Table B.3.

B.2. Kinetic model

The kinetic model of the process has to be solved together with the
thermal model or sequentially, with the knowledge of the temperature
field. The convection diffusion partial differential equation system
stated by Eq. (1) has to be solved, with the scaled reaction terms.

The concentration of the amorphous solid 𝐶𝑎𝑚,𝑎𝑏𝑠 and the concen-
tration of the dissolved solid 𝐶𝑠𝑜𝑙,𝑎𝑏𝑠 are scaled with the total solid
concentration 𝐶 to calculate the scaled concentration of the
13

𝑡𝑜𝑡𝑎𝑙,𝑎𝑏𝑠
Table B.3
Parameters of the thermal model.

Name Value Unit

𝑧ℎ𝑒𝑎𝑡𝑒𝑟,1,𝑏𝑒𝑔𝑖𝑛 0 m
𝑧ℎ𝑒𝑎𝑡𝑒𝑟,1,𝑒𝑛𝑑 14.4 m
𝑧ℎ𝑒𝑎𝑡𝑒𝑟,2,𝑏𝑒𝑔𝑖𝑛 14.4 m
𝑧ℎ𝑒𝑎𝑡𝑒𝑟,2,𝑒𝑛𝑑 38.4 m
𝑧ℎ𝑒𝑎𝑡𝑒𝑟,3,𝑏𝑒𝑔𝑖𝑛 38.4 m
𝑧ℎ𝑒𝑎𝑡𝑒𝑟,3,𝑒𝑛𝑑 42.4 m
𝐿 42.4 m
𝜌𝑅𝐴𝑅 1.595 kg m−1

𝜌𝑅𝑐𝑝,𝑅𝐴𝑅 5836.97 J K−1 m−1

𝜌𝑤𝑐𝑝,𝑤𝐴𝑤 4550.53 J K−1 m−1

𝜌𝐽 𝑐𝑝,𝐽𝐴𝐽 2452.68 J K−1 m−1

𝜆𝑤∕𝜌𝑤𝑐𝑝,𝑤 3.75e−6 s−1

𝑘𝐴𝑅,𝑤 228.673 J s−1 K−1

𝑘𝐴𝑅,𝑤,𝑒𝑛𝑑 983.122 J s−1 K−1

𝑘𝐴𝑤,𝐽 362.86 J s−1 K−1

𝑘𝐴𝐸,𝐽 2.111 J s−1 K−1

𝑣𝑜𝑖𝑙,𝑖 0.15 m s−1

𝑇𝐸 293.15 K

amorphous solid 𝐶𝑎𝑚,𝑠 and the scaled concentration of the dissolved
solid 𝐶𝑠𝑜𝑙,𝑠.

𝐶𝑎𝑚,𝑠 = 𝐶𝑎𝑚,𝑎𝑏𝑠∕𝐶𝑡𝑜𝑡𝑎𝑙 (B.1)

𝐶𝑠𝑜𝑙,𝑠 = 𝐶𝑠𝑜𝑙,𝑎𝑏𝑠∕𝐶𝑡𝑜𝑡𝑎𝑙 (B.2)

The moments 𝜇𝑘,𝑎𝑏𝑠 are scaled with the factor 𝜋∕6𝑣𝑚 and the total solid
concentration. Furthermore, the moments are scaled with the length
𝑙𝑟𝑒𝑓 of 1 μm, to obtain the scaled moments 𝜇𝑘,𝑠

𝜇3,𝑠 =
6𝑣𝑚

𝜋𝐶𝑡𝑜𝑡𝑎𝑙
𝜇3,𝑎𝑏𝑠 (B.3)

𝜇2,𝑠 =
6𝑣𝑚

𝜋𝐶𝑡𝑜𝑡𝑎𝑙
𝑙1𝑟𝑒𝑓𝜇2,𝑎𝑏𝑠 (B.4)

𝜇1,𝑠 =
6𝑣𝑚

𝜋𝐶𝑡𝑜𝑡𝑎𝑙
𝑙2𝑟𝑒𝑓𝜇1,𝑎𝑏𝑠 (B.5)

𝜇0,𝑠 =
6𝑣𝑚

𝜋𝐶𝑡𝑜𝑡𝑎𝑙
𝑙3𝑟𝑒𝑓𝜇0,𝑎𝑏𝑠. (B.6)

From this follows that the scaled third moment is equal to the scaled
zeolite concentration (𝐶𝑧𝑒𝑜,𝑠 = 𝜇3,𝑠). The scaled reaction terms are
shown below, in these only the scaled concentrations and moments are
used.

𝐻(𝑡, 𝑧) = 𝑘𝐻,0 exp

(

𝐸𝐴,𝐻

𝑅 ⋅ 𝑇𝑅

)

⋅ (𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑎𝑚) ⋅ 𝐶𝑎𝑚 (B.7a)

𝐺(𝑡, 𝑧) = 𝑘𝑔,0 exp

(

𝐸𝐴,𝑔

𝑅 ⋅ 𝑇𝑅

)

⋅(𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑧𝑒𝑜) (B.7b)

𝐵(𝑡, 𝑧) = 𝑘𝐵,0 exp

(

𝐸𝐴,𝐵

𝑅 ⋅ 𝑇𝑅

)

⋅ 𝑆⋅(𝐶𝑠𝑜𝑙 − 𝐶𝑒𝑞,𝑧𝑒𝑜) (B.7c)

𝜅𝐶𝑎𝑚
(𝑡, 𝑧) = −𝐻(𝑡, 𝑧) (B.7d)

𝜅𝐶𝑠𝑜𝑙
(𝑡, 𝑧) = 𝐻(𝑡, 𝑧) − 𝜅𝜇3 (𝑡, 𝑧) (B.7e)

𝜅𝑆 (𝑡, 𝑧) = 𝑘𝐻 ⋅(𝐶𝑒𝑞,𝑎𝑚 − 𝐶𝑠𝑜𝑙)⋅(𝐾𝐶𝐶𝑎𝑚 − 𝑆) (B.7f)

𝜅𝜇0 (𝑡, 𝑧) = 𝐵(𝑡, 𝑧) (B.7g)

𝜅𝜇1 (𝑡, 𝑧) = 𝐺(𝑡, 𝑧) ⋅ 𝜇0 (B.7h)

𝜅𝜇2 (𝑡, 𝑧) = 2 ⋅ 𝐺(𝑡, 𝑧) ⋅ 𝜇1 (B.7i)

𝜅𝜇3 (𝑡, 𝑧) = 3 ⋅ 𝐺(𝑡, 𝑧) ⋅ 𝜇2 (B.7j)

The required scaled parameters and inlet conditions are given in Ta-
ble B.4
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Table B.4
Parameters of the kinetic model.

Name Value Unit

𝐿 42.4 m
𝑆𝑖𝑛 1 –
𝐶𝑎𝑚,𝑖𝑛 0.9547 –
𝐶𝑠𝑜𝑙,𝑖𝑛 0.0453 –
𝜇0,𝑖𝑛 0 –
𝜇1,𝑖𝑛 0 –
𝜇2,𝑖𝑛 0 –
𝜇3,𝑖𝑛 0 –
𝑘𝐻,0 4.469e6 s−1

𝐸𝐴,𝐻 14 740 J mol−1

𝑘𝐵,0 3.351e9 s−1

𝐸𝐴,𝐵 78 324 J mol−1

𝐾𝑐 0.00345 –
𝑘𝑔,0 2.493e9 s−1

𝐸𝐴,𝑔 78 324 J mol−1

𝐶𝑒𝑞,𝑎𝑚 0.0453 –
𝐶𝑒𝑞,𝑧𝑒𝑜 0.025 –
𝜌𝑅𝐴𝑅 1.595 kg m−1

𝑃𝑒 240.2 –

References

[1] C.S. Cundy, P.A. Cox, The hydrothermal synthesis of zeolites: Precursors, inter-
mediates and reaction mechanism, Microporous Mesop. Mater. 82 (2005) 1–78,
http://dx.doi.org/10.1016/j.micromeso.2005.02.016.

[2] H. Toufar, Technische und ökonomische Aspekte industrieller Zeolithsynthe-
sen, Chem. Ing. Tech. 82 (2010) 1049–1058, http://dx.doi.org/10.1002/cite.
201000073.

[3] A.-N. Parvulescu, S. Maurer, Toward sustainability in zeolite manufacturing: An
industry perspective, Front. Chem. 10 (2022) 1050363, http://dx.doi.org/10.
3389/fchem.2022.1050363.

[4] M.B. Plutschack, B. Pieber, K. Gilmore, P.H. Seeberger, The Hitchhiker’s guide
to flow chemistry, Chem. Rev. 117 (2017) 11796–11893, http://dx.doi.org/10.
1021/acs.chemrev.7b00183.

[5] Z. Liu, J. Zhu, C. Peng, T. Wakihara, T. Okubo, Continuous flow synthesis
of ordered porous materials: From zeolites to metal–organic frameworks and
mesoporous silica, React. Chem. Eng. 4 (2019) 1699–1720, http://dx.doi.org/
10.1039/C9RE00142E.

[6] N.A. Azri, R. Patel, G. Ozbuyukkaya, C. Kowall, G. Cormack, N. Proust, R. Enick,
G. Veser, Batch-to-continuous transition in the specialty chemicals industry:
Impact of operational differences on the production of dispersants, Chem. Eng.
J. 445 (2022) 136775, http://dx.doi.org/10.1016/j.cej.2022.136775.

[7] A. Deneyer, Q. Ke, J. Devos, M. Dusselier, Zeolite synthesis under nonconven-
tional conditions: Reagents, reactors, and Modi Operandi, Chem. Mater. 32 (2020)
4884–4919, http://dx.doi.org/10.1021/acs.chemmater.9b04741.

[8] C. Cundy, M. Henty, R. Plaisted, Zeolite synthesis using a semicontinuous reactor,
part 1: Controlled nucleation and growth of ZSM-5 crystals having well-defined
morphologies, Zeolites 15 (1995) 353–372, http://dx.doi.org/10.1016/0144-
2449(94)00052-T.

[9] Z. Liu, T. Wakihara, C. Anand, S.H. Keoh, D. Nishioka, Y. Hotta, T. Matsuo,
T. Takewaki, T. Okubo, Ultrafast synthesis of silicalite-1 using a tubular reactor
with a feature of rapid heating, Microporous Mesop. Mater. 223 (2016) 140–144,
http://dx.doi.org/10.1016/j.micromeso.2015.11.001.

[10] T. Vandermeersch, T.R. Va. Assche, J.F. Denayer, W.D. Malsche, A continuous
flow reactor setup as a tool for rapid synthesis of micron sized NaA zeolite,
Microporous Mesop. Mater. 226 (2016) 133–139, http://dx.doi.org/10.1016/j.
micromeso.2015.12.039.

[11] M. Mackley, X. Ni, Mixing and dispersion in a baffled tube for steady laminar
and pulsatile flow, Chem. Eng. Sci. 46 (1991) 3139–3151, http://dx.doi.org/10.
1016/0009-2509(91)85017-R.

[12] M. Mackley, P. Stonestreet, Heat transfer and associated energy dissipation
for oscillatory flow in baffled tubes, Chem. Eng. Sci. 50 (1995) 2211–2224,
http://dx.doi.org/10.1016/0009-2509(95)00088-M.

[13] S. Lawton, G. Steele, P. Shering, L. Zhao, I. Laird, X.-W. Ni, Continuous
crystallization of pharmaceuticals using a continuous oscillatory baffled crystal-
lizer, Org. Process Res. Dev. 13 (2009) 1357–1363, http://dx.doi.org/10.1021/
op900237x.

[14] X. Ni, A. Liao, Effects of mixing, seeding, material of baffles and final tem-
perature on solution crystallization of l-glutamic acid in an oscillatory baffled
crystallizer, Chem. Eng. J. 156 (2010) 226–233, http://dx.doi.org/10.1016/j.cej.
2009.10.045.

[15] N. Masngut, A.P. Harvey, J. Ikwebe, Potential uses of oscillatory baffled reactors
for biofuel production, Biofuels 1 (2010) 605–619, http://dx.doi.org/10.4155/
bfs.10.38.
14
[16] S. Nicolas, C. Lutz, J.-L. Dubois, Y. Lecomte, Method for the continuous synthesis
of zeolite crystals, 2018.

[17] H. Ramire. Mendoza, M. Valdez, T. van Gerven, C. Lutz, Continuous flow
synthesis of zeolite FAU in an oscillatory baffled reactor, J. Adv. Manuf. Process.
2 (2020) http://dx.doi.org/10.1002/amp2.10038.

[18] H. Toufar, K.-P. Wendlandt, H.G. Karge, A simple model for the kinetic
evaluation of zeolite crystallization processes, J. Chem. Soc., Faraday Trans. 91
(1995) 549, http://dx.doi.org/10.1039/ft9959100549.

[19] M. Avrami, Kinetics of phase change. II transformation-time relations for random
distribution of nuclei, J. Chem. Phys. 8 (1940) 212–224, http://dx.doi.org/10.
1063/1.1750631.

[20] A.F. Gualtieri, Synthesis of sodium zeolites from a natural halloysite, Phys. Chem.
Miner. 28 (2001) 719–728, http://dx.doi.org/10.1007/s002690100197.

[21] R.W. Thompson, A. Dyer, A modified population balance model for hydrothermal
molecular sieve zeolite synthesis, Zeolites 5 (1985) 292–301, http://dx.doi.org/
10.1016/0144-2449(85)90161-7.

[22] V. Nikolakis, D.G. Vlacho, M. Tsapatsis, Modeling of zeolite crystallization:
The role of gel microstructure, Microporous Mesop. Mater. 21 (1998) 337–346,
http://dx.doi.org/10.1016/S1387-1811(98)00017-1.

[23] B. Houska, F. Logist, J. Va. Impe, M. Diehl, Robust optimization of nonlinear dy-
namic systems with application to a jacketed tubular reactor, J. Process Control
22 (2012) 1152–1160, http://dx.doi.org/10.1016/j.jprocont.2012.03.008.

[24] J. Luedtke, S. Ahmed, A sample approximation approach for optimization with
probabilistic constraints, SIAM J. Optim. 19 (2008) 674–699, http://dx.doi.org/
10.1137/070702928.

[25] S. Julier, J. Uhlmann, H. Durrant-Whyte, A new approach for filtering nonlinear
systems, in: Proceedings of 1995 American Control Conference, vol. 3, ACC’95,
American Autom Control Council, Seattle, WA, USA, 1995, pp. 1628–1632,
http://dx.doi.org/10.1109/ACC.1995.529783.

[26] S. Recker, P. Kühl, M. Diehl, H.G. Bock, Sigmapoint approach for robust
optimization of nonlinear dynamic systems, in: International Conference on
Simulation and Modeling Methodologies, Technologies and Applications, 2018.

[27] R. Semrau, S. Engell, Process as a battery: Electricity price aware optimal
operation of zeolite crystallization in a continuous oscillatory baffled reactor,
Comput. Chem. Eng. (2023) 108143, http://dx.doi.org/10.1016/j.compchemeng.
2023.108143.

[28] A. Julbe, M. Drobek, Zeolite X: Type, in: E. Drioli, L. Giorno (Eds.), Encyclopedia
of Membranes, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 1–2,
http://dx.doi.org/10.1007/978-3-642-40872-4_607-1.

[29] H. Ramire Mendoza, Ultrasound-Assisted Synthesis of Zeolite Catalysts (Ph.D.
thesis), KU Leuven, 2020.

[30] M. Manninen, E. Gorshkova, K. Immonen, X.-W. Ni, Evaluation of axial dispersion
and mixing performance in oscillatory baffled reactors using CFD: Axial disper-
sion and mixing performance in oscillatory baffled reactors, J. Chem. Technol.
Biotechnol. 88 (2013) 553–562, http://dx.doi.org/10.1002/jctb.3979.

[31] O. Levenspiel, The Chemical Reactor Omnibook, veränd. u. korr. neuausg. ed.,
lulu.com, Raleigh, NC, 2013.

[32] S. Yang, A. Navrotsky, B.L. Phillips, An in situ calorimetric study of the synthesis
of FAU zeolite, Microporous Mesop. Mater. 46 (2001) 137–151, http://dx.doi.
org/10.1016/S1387-1811(01)00268-2.

[33] R.W. Thompson, A. Dyer, Mathematical analyses of zeolite crystallization,
Zeolites 5 (1985) 202–210, http://dx.doi.org/10.1016/0144-2449(85)90086-7.

[34] S.K. Bhatia, D.D. Perlmutter, A random pore model for fluid-solid reactions: I.
Isothermal, kinetic control, AIChE J. 26 (1980) 379–386, http://dx.doi.org/10.
1002/aic.690260308.

[35] G.T. Kerr, Chemistry of crystalline aluminosilicates. I. Factors affecting the
formation of zeolite A, J. Phys. Chem. 70 (1966) 1047–1050, http://dx.doi.org/
10.1021/j100876a015.

[36] T. Antonic, A. Ci, Dissolution of amorphous aluminosilicate zeolite precursors in
alkaline solutions, J. Chem. Soc. Faraday Trans. 90 (1994) 4.

[37] B. Subotić, J. Bronić, T. Antoni´ Jelić, Theoretical and practical aspects of
zeolite nucleation, in: Ordered Porous Solids, Elsevier, 2009, pp. 127–185,
http://dx.doi.org/10.1016/B978-0-444-53189-6.00006-8.

[38] A. Palčić, B. Subotić, V. Valtchev, J. Bronić, Nucleation and crystal growth
of zeolite a synthesised from hydrogels of different density, CrystEngComm 15
(2013) 5784, http://dx.doi.org/10.1039/c3ce40450.

[39] S. Gonthier, L. Gora, I. Güray, R.W. Thompson, Further comments on the role
of autocatalytic nucleation in hydrothermal zeolite syntheses, Zeolites 13 (1993)
414–418, http://dx.doi.org/10.1016/0144-2449(93)90113-H.

[40] B. Subotić, T. Antonić, Lnfluence of physicochemical and structural properties of
aluminosilicate gel precursors on the kinetics of crystallization zeolites A and X,
in: Proceedings of the 12th International Zeolite Conference, 1999.

[41] H. Lechert, H. Kacirek, The kinetics of nucleation of X zeolites, Zeolites 13 (1993)
192–200, http://dx.doi.org/10.1016/S0144-2449(05)80277-5.

[42] A.E. Bouaswaig, S. Engell, WENO scheme with static grid adaptation for tracking
steep moving fronts, Chem. Eng. Sci. 64 (2009) 3214–3226, http://dx.doi.org/
10.1016/j.ces.2009.03.040.

[43] F. Acker, R.B. de R. Borges, B. Costa, An improved WENO-Z scheme, J. Comput.
Phys. 313 (2016) 726–753, http://dx.doi.org/10.1016/j.jcp.2016.01.038.

http://dx.doi.org/10.1016/j.micromeso.2005.02.016
http://dx.doi.org/10.1002/cite.201000073
http://dx.doi.org/10.1002/cite.201000073
http://dx.doi.org/10.1002/cite.201000073
http://dx.doi.org/10.3389/fchem.2022.1050363
http://dx.doi.org/10.3389/fchem.2022.1050363
http://dx.doi.org/10.3389/fchem.2022.1050363
http://dx.doi.org/10.1021/acs.chemrev.7b00183
http://dx.doi.org/10.1021/acs.chemrev.7b00183
http://dx.doi.org/10.1021/acs.chemrev.7b00183
http://dx.doi.org/10.1039/C9RE00142E
http://dx.doi.org/10.1039/C9RE00142E
http://dx.doi.org/10.1039/C9RE00142E
http://dx.doi.org/10.1016/j.cej.2022.136775
http://dx.doi.org/10.1021/acs.chemmater.9b04741
http://dx.doi.org/10.1016/0144-2449(94)00052-T
http://dx.doi.org/10.1016/0144-2449(94)00052-T
http://dx.doi.org/10.1016/0144-2449(94)00052-T
http://dx.doi.org/10.1016/j.micromeso.2015.11.001
http://dx.doi.org/10.1016/j.micromeso.2015.12.039
http://dx.doi.org/10.1016/j.micromeso.2015.12.039
http://dx.doi.org/10.1016/j.micromeso.2015.12.039
http://dx.doi.org/10.1016/0009-2509(91)85017-R
http://dx.doi.org/10.1016/0009-2509(91)85017-R
http://dx.doi.org/10.1016/0009-2509(91)85017-R
http://dx.doi.org/10.1016/0009-2509(95)00088-M
http://dx.doi.org/10.1021/op900237x
http://dx.doi.org/10.1021/op900237x
http://dx.doi.org/10.1021/op900237x
http://dx.doi.org/10.1016/j.cej.2009.10.045
http://dx.doi.org/10.1016/j.cej.2009.10.045
http://dx.doi.org/10.1016/j.cej.2009.10.045
http://dx.doi.org/10.4155/bfs.10.38
http://dx.doi.org/10.4155/bfs.10.38
http://dx.doi.org/10.4155/bfs.10.38
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb16
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb16
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb16
http://dx.doi.org/10.1002/amp2.10038
http://dx.doi.org/10.1039/ft9959100549
http://dx.doi.org/10.1063/1.1750631
http://dx.doi.org/10.1063/1.1750631
http://dx.doi.org/10.1063/1.1750631
http://dx.doi.org/10.1007/s002690100197
http://dx.doi.org/10.1016/0144-2449(85)90161-7
http://dx.doi.org/10.1016/0144-2449(85)90161-7
http://dx.doi.org/10.1016/0144-2449(85)90161-7
http://dx.doi.org/10.1016/S1387-1811(98)00017-1
http://dx.doi.org/10.1016/j.jprocont.2012.03.008
http://dx.doi.org/10.1137/070702928
http://dx.doi.org/10.1137/070702928
http://dx.doi.org/10.1137/070702928
http://dx.doi.org/10.1109/ACC.1995.529783
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb26
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb26
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb26
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb26
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb26
http://dx.doi.org/10.1016/j.compchemeng.2023.108143
http://dx.doi.org/10.1016/j.compchemeng.2023.108143
http://dx.doi.org/10.1016/j.compchemeng.2023.108143
http://dx.doi.org/10.1007/978-3-642-40872-4_607-1
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb29
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb29
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb29
http://dx.doi.org/10.1002/jctb.3979
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb31
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb31
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb31
http://dx.doi.org/10.1016/S1387-1811(01)00268-2
http://dx.doi.org/10.1016/S1387-1811(01)00268-2
http://dx.doi.org/10.1016/S1387-1811(01)00268-2
http://dx.doi.org/10.1016/0144-2449(85)90086-7
http://dx.doi.org/10.1002/aic.690260308
http://dx.doi.org/10.1002/aic.690260308
http://dx.doi.org/10.1002/aic.690260308
http://dx.doi.org/10.1021/j100876a015
http://dx.doi.org/10.1021/j100876a015
http://dx.doi.org/10.1021/j100876a015
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb36
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb36
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb36
http://dx.doi.org/10.1016/B978-0-444-53189-6.00006-8
http://dx.doi.org/10.1039/c3ce40450
http://dx.doi.org/10.1016/0144-2449(93)90113-H
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb40
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb40
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb40
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb40
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb40
http://dx.doi.org/10.1016/S0144-2449(05)80277-5
http://dx.doi.org/10.1016/j.ces.2009.03.040
http://dx.doi.org/10.1016/j.ces.2009.03.040
http://dx.doi.org/10.1016/j.ces.2009.03.040
http://dx.doi.org/10.1016/j.jcp.2016.01.038


Chemical Engineering and Processing - Process Intensification 198 (2024) 109728R. Semrau et al.
[44] J.A.E. Andersson, J. Gillis, G. Horn, J.B. Rawlings, M. Diehl, CasADi: A software
framework for nonlinear optimization and optimal control, Math. Program.
Comput. 11 (2019) 1–36, http://dx.doi.org/10.1007/s12532-018-0139-4.

[45] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S.
Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation
solvers, ACM Trans. Math. Software 31 (2005) 363–396, http://dx.doi.org/10.
1145/1089014.1089020.

[46] F. Gao, L. Han, Implementing the Nelder-Mead simplex algorithm with adaptive
parameters, Comput. Optim. Appl. 51 (2012) 259–277, http://dx.doi.org/10.
1007/s10589-010-9329-3.

[47] R.R. Rhinehart, Nonlinear Regression Modeling for Engineering Applications:
Modeling, Model Validation, and Enabling Design of Experiments, first ed., Wiley,
2016, http://dx.doi.org/10.1002/9781118597972.

[48] K. Smith, M. Mackley, An experimental investigation into the scale-up of
oscillatory flow mixing in baffled tubes, Chem. Eng. Res. Des. 84 (2006)
1001–1011, http://dx.doi.org/10.1205/cherd.05054.
15
[49] K.B. Smith, Scale-Up of Oscillatory Flow Mixing, (Ph.D. thesis), Christ’s College,
Cambridge, 2000.

[50] S. Yang, A. Navrotsky, An in situ calorimetric study of zeolite crystallization
kinetics, Microporous Mesop. Mater. 52 (2002) 93–103, http://dx.doi.org/10.
1016/S1387-1811(02)00276-7.

[51] A. Wächter, L.T. Biegler, On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming, Math. Program. 106
(2006) 25–57, http://dx.doi.org/10.1007/s10107-004-0559-y.

[52] I.S. Duff, J.K. Reid, The multifrontal solution of indefinite sparse symmetric
linear, ACM Trans. Math. Software 9 (1983) 302–325, http://dx.doi.org/10.
1145/356044.356047.

[53] M. Cegla, A. Buczko, S. Kemmerling, S. Engell, Experimental application of real-
time optimization with modifier adaptation and quadratic approximation to a
reactive extrusion process, IFAC-PapersOnLine 57 (2023).

http://dx.doi.org/10.1007/s12532-018-0139-4
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1007/s10589-010-9329-3
http://dx.doi.org/10.1007/s10589-010-9329-3
http://dx.doi.org/10.1007/s10589-010-9329-3
http://dx.doi.org/10.1002/9781118597972
http://dx.doi.org/10.1205/cherd.05054
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb49
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb49
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb49
http://dx.doi.org/10.1016/S1387-1811(02)00276-7
http://dx.doi.org/10.1016/S1387-1811(02)00276-7
http://dx.doi.org/10.1016/S1387-1811(02)00276-7
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1145/356044.356047
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb53
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb53
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb53
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb53
http://refhub.elsevier.com/S0255-2701(24)00067-9/sb53

	Dynamic modeling and robust optimal operation of the hydrothermal synthesis of zeolites in a continuous oscillatory baffled reactor
	Introduction
	Process
	Dynamic model
	Mass transport
	Energy transport
	Zeolite crystallization
	Dissolution
	Nucleation
	Growth

	Summary

	Model validation
	Methodology
	Mass transport
	Energy balance
	Zeolite crystallization

	Quantification of the model uncertainty 
	Methodology
	The unscented transform
	Quantification of the plant-model mismatch at steady state
	Validation of the quantification of the plant-model mismatch in dynamic simulations

	Robust optimization of the operation of the COBR
	Problem statement
	Implementation
	Optimization results
	Evaluation of the probability of constraint violations
	Application to the real process

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Kinetic model
	Evolution of the inner surface area
	Effect of the surface evolution on the crystal growth

	Appendix B. Dynamic model
	Thermal model
	Kinetic model

	References


